Structured Low-Rank Approximation with Missing Data

نویسندگان

  • Ivan Markovsky
  • Konstantin Usevich
چکیده

We consider low-rank approximation of affinely structured matrices with missing elements. The method proposed is based on reformulation of the problem as inner and outer optimization. The inner minimization is a singular linear least-norm problem and admits an analytic solution. The outer problem is a nonlinear least squares problem and is solved by local optimization methods: minimization subject to quadratic equality constraints and unconstrained minimization with regularized cost function. The method is generalized to weighted low-rank approximation with missing values and is illustrated on approximate low-rank matrix completion, system identification, and data-driven simulation problems. An extended version of the paper is a literate program, implementing the method and reproducing the presented results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Low Multilinear Rank Approximation by Structured Matrix Low-Rank Approximation

We present a new connection between higherorder tensors and affinely structured matrices, in the context of low-rank approximation. In particular, we show that the tensor low multilinear rank approximation problem can be reformulated as a structured matrix low-rank approximation, the latter being an extensively studied and well understood problem. We first consider symmetric tensors. Although t...

متن کامل

Recent process on structured low-rank approximation

Rank deficiency of a data matrix is equivalent to the existence of an exact linear model for the data. For the purpose of linear static modeling, the matrix is unstructured and the corresponding modeling problem is an approximation of the matrix by another matrix of a lower rank. In the context of linear time-invariant dynamic models, the appropriate data matrix is Hankel and the corresponding ...

متن کامل

Recent progress in structured low-rank approximation

Rank deficiency of a data matrix is equivalent to the existence of an exact linear model for the data. For the purpose of linear static modeling, the matrix is unstructured and the correspondingmodeling problem is an approximation of the matrix by another matrix of a lower rank. In the context of linear time-invariant dynamic models, the appropriate data matrix is Hankel and the corresponding m...

متن کامل

Recent progress on variable projection methods for structured low-rank approximation

Rank deficiency of a data matrix is equivalent to the existence of an exact linear model for the data. For the purpose of linear static modeling, the matrix is unstructured and the corresponding modeling problem is an approximation of the matrix by another matrix of a lower rank. In the context of linear time-invariant dynamic models, the appropriate data matrix is Hankel and the corresponding ...

متن کامل

Sum-of-Exponentials Modeling and Common Dynamics Estimation Using Tensorlab

Fitting a signal to a sum-of-exponentials model is a basic problem in signal processing. It can be posed and solved as a Hankel structured low-rank matrix approximation problem. Subsequently, local optimization, subspace, and convex relaxation methods can be used for the numerical solution. In this paper, we show another approach, based on the recently proposed concept of structured data fusion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2013